文章出處:知識中心 網(wǎng)責(zé)任編輯: 洛陽軸承 閱讀量: 發(fā)表時(shí)間:2021-11-11 08:40:20
4、表層組織轉(zhuǎn)變控制
滲碳軸承鋼由表層向心部碳含量逐漸降低,熱處理后表層不同深度處的組織存在差異,淬火后滲碳軸承鋼從表面到心部的基體組織依次為:
針狀馬氏體→針狀馬氏體+板條馬氏體→板條馬氏體。淬火加熱溫度是馬氏體淬火中的一個(gè)重要影響因素,一方面,較高的淬火加熱溫度有利于碳元素和其他合金元素在奧氏體中擴(kuò)散均勻;另一方面,在較高的淬火加熱溫度下,更多的碳化物發(fā)生溶解,釘扎晶界效果減弱,將促使奧氏體晶粒長大。淬火馬氏體的形貌及尺寸決定了鋼的硬度、強(qiáng)度和韌性等性能指標(biāo),而晶粒細(xì)化是唯一既可以提高材料強(qiáng)度又能提高韌性的方法,因此選取合理的淬火溫度和保溫時(shí)間非常重要。
高速鐵路軸承需要承受更大的沖擊載荷,軸承用鋼不僅要求具有高耐磨性、高抗疲勞性,還要有良好的沖擊韌性。對于滲碳軸承鋼,選擇合理的二次淬火溫度能獲得優(yōu)異的表層組織和性能。高速鐵路軸承常用的G20CrNi2Mo鋼經(jīng)945 ℃滲碳后在860 ℃預(yù)冷淬火,然后進(jìn)行830 ℃的二次淬火,獲得的組織如圖6所示,經(jīng)二次淬火后滲碳層中的針片馬氏體變得更加細(xì)小,基體上彌散析出細(xì)小均勻的碳化物顆粒,耐磨性明顯改蓋。
圖6 G20CrNi2Mo鋼二次淬火前、后的組織對比
Fig.6 Microstructure comparison of G20CrNi2Mo steel before and after secondary quenching
殲–20戰(zhàn)斗機(jī)和C919大飛機(jī)的先后問世代表了我國航空工業(yè)的崛起,而飛機(jī)機(jī)動性的每一次提升主要依靠發(fā)動機(jī)推重比的增加,如今發(fā)動機(jī)主軸dn值已經(jīng)達(dá)到2.4×106 mm·r·min-1,發(fā)動機(jī)主軸軸承的工作溫度逼近300 ℃,且長期承受巨大的沖擊載荷和循環(huán)疲勞應(yīng)力。為適應(yīng)航空軸承更高的性能要求,我國研發(fā)了第2代高溫滲碳軸承鋼G13Cr4Mo4Ni4V(ASTM M50NiL)。根據(jù)YB/T 4106——2000《航空發(fā)動機(jī)用高溫滲碳軸承鋼》規(guī)定,其經(jīng)過滲碳、淬火和回火處理后的表層硬度可達(dá)到62~63 HRC,具有較高的耐磨性和良好的抗疲勞性能,心部板條馬氏體提供了良好的沖擊韌性。圖7所示為G13Cr4Mo4Ni4V鋼常用的滲碳熱處理工藝,真空滲碳時(shí)的溫度一般為890 ℃,然后經(jīng)1 100 ℃淬火,再545 ℃回火處理3次,每次2 h。
圖7 G13Cr4Mo4Ni4V鋼的滲碳熱處理工藝示意圖
Fig.7 Diagram of carburizing heat treatment process for G13Cr4Mo4Ni4V steel
與G13Cr4Mo4Ni4V鋼相似的M50NiL鋼經(jīng)過滲碳熱處理后微觀組織如圖8所示,由圖8b可以清晰看出硬化層的基體組織主要為隱晶馬氏體,而過渡區(qū)的組織中既有片狀馬氏體,也有低碳板條馬氏體,其中馬氏體板條的尺寸比心部更加細(xì)小,這是由于心部碳含量低,在高的溫度下固溶處理后奧氏體晶粒較粗大,從而導(dǎo)致馬氏體板條更易生長。
圖8 M50NiL鋼經(jīng)滲碳熱處理后的組織形態(tài)
Fig.8 Microstructure of M50NiL steel after carburizing heat treatment
文獻(xiàn)[65]研究了貝氏體等溫淬火對G23Cr2Ni2Si1 Mo鋼滲碳層組織及性能的影響:在200 ℃下等溫8h后,滲碳層獲得了數(shù)量可觀的針狀下貝氏體(圖9a);圖9b中可以清晰地看到,在納米級的貝氏體鐵素體板條之間存在著薄膜狀殘余奧氏體。細(xì)小的貝氏體鐵素體板條使得相界面積大幅度增加,有利于阻礙位錯(cuò)滑移,抵抗塑性變形,且富碳的薄膜狀殘余奧氏體可以有效阻礙微裂紋擴(kuò)展,因此有利于提高韌性和耐磨性。試驗(yàn)證明,與傳統(tǒng)滲碳淬火相比,等溫淬火鋼的耐磨性提高了58% ,沖擊韌性提高了33.3%。
圖9 G23Cr2Ni2Si1 Mo 鋼在200 ℃等溫8 h后的滲碳層微觀組織
Fig.9 Microstructure of carburized layer of G23Cr2Ni2Si1 Mo steel austempered at 200 ℃ for 8 hours
5、表層殘余奧氏體的控制
滲碳軸承鋼的表層碳濃度較高,且含有大量Cr,Ni等合金元素,Cr在滲碳加熱時(shí)固溶到奧氏體中,增加了奧氏體的穩(wěn)定性,Ni是擴(kuò)大γ相區(qū)的合金元素,能與γ-Fe形成無限固溶體,進(jìn)一步增加奧氏體的穩(wěn)定性。由于Ms點(diǎn)的降低,滲碳軸承鋼表層淬火后會留下大量未轉(zhuǎn)變的過冷奧氏體,但最高殘余奧氏體量一般在距邊緣0.2~0.4 mm處。奧氏體的穩(wěn)定化分為兩類:
1)由于鋼的淬火加熱溫度一般低于完全奧氏體化溫度,所以奧氏體中的碳及合金元素是不均勻的,存在貧/富碳區(qū),當(dāng)淬冷至Ms點(diǎn)以下時(shí),貧碳區(qū)將發(fā)生馬氏體轉(zhuǎn)變,部分富碳區(qū)由于未達(dá)到Ms點(diǎn)以下溫度,所以這部分奧氏體不發(fā)生轉(zhuǎn)變而保留下來,也稱為熱穩(wěn)定化;
2)由于馬氏體的比容大于奧氏體,所以發(fā)生馬氏體轉(zhuǎn)變時(shí)伴隨著體積膨脹,存在于2個(gè)馬氏體板條(或馬氏體針)之間的奧氏體受到壓應(yīng)力作用,使得奧氏體更難向馬氏體轉(zhuǎn)變,從而產(chǎn)生力學(xué)穩(wěn)定現(xiàn)象。在馬氏體轉(zhuǎn)變期間,奧氏體的熱穩(wěn)定化與力學(xué)穩(wěn)定化是同時(shí)存在的,但殘余奧氏體含量過高不利于表面硬度和尺寸穩(wěn)定。
高溫回火對殘余奧氏體的轉(zhuǎn)變具有催化作用:
一方面,高溫回火促進(jìn)碳化物從殘余奧氏體中析出并聚集長大,碳含量的降低導(dǎo)致殘余奧氏體Ms點(diǎn)升高,熱穩(wěn)定性減弱,在空冷過程中將更容易轉(zhuǎn)變?yōu)轳R氏體;
另一方面,高溫回火使一次馬氏體大量分解,過飽和碳原子大量析出導(dǎo)致馬氏體正方度減小,殘余奧氏體受到周圍馬氏體的壓應(yīng)力作用減弱,力學(xué)穩(wěn)定性減弱,因此在空冷過程中殘余奧氏體更易向馬氏體轉(zhuǎn)變。
如表⒉所示,G20CrNi2Mo滲碳軸承鋼制軸承內(nèi)圈表層殘余奧氏體含量的質(zhì)量要求為15%~25%,原始熱處理工藝無法滿足,采用更高溫度( 215,225 ℃)進(jìn)行回火處理后,殘余奧氏體含量明顯下降,215 ℃回火后的殘余奧氏體含量和表面硬度均符合要求,最終采用215 ℃作為回火溫度。除了通過提高回火溫度來降低殘余奧氏體含量以外,增加回火次數(shù)、延長回火保溫時(shí)間也有利于促進(jìn)殘余奧氏體的轉(zhuǎn)變,但延長回火時(shí)間不如前2種方法更有效。
表2 G20CrNi2Mo 鋼不同滲碳熱處理后內(nèi)圈滾道的殘余奧氏體含量
Tab.2 Residual austenite content of inner ring raceway after different carburizing heat treatments of G20CrNi2Mo steel
冷處理(-90 ℃)或深冷處理(-190 ℃)使殘余奧氏體在連續(xù)冷卻過程中繼續(xù)轉(zhuǎn)變?yōu)轳R氏體,進(jìn)一步提高基體硬度,并有助于穩(wěn)定軸承尺寸精度。此外,殘余奧氏體作為一種韌性相,保留一定數(shù)量的殘余奧氏體可以延緩裂紋尖端應(yīng)力,防止軸承過早出現(xiàn)因滑動和滾動磨損而引起凹坑、剝落等疲勞損傷。
文獻(xiàn)[71]對全淬硬GCr15軸承鋼進(jìn)行了表面真空滲碳處理,滲碳熱處理后表層殘余奧氏體含量高達(dá)20%,顯著高于常規(guī)熱處理,但滾動接觸疲勞壽命卻比滲碳前提高了近10倍。
文獻(xiàn)[72]對20CrMnMoAl滲碳軸承鋼在220 ℃下等溫淬火 32 h后幾乎得到了全貝氏體組織(圖10),TEM觀察發(fā)現(xiàn),在貝氏體鐵素體條之間存在著僅十幾納米厚的殘余奧氏體薄膜,由于Al對碳化物的抑制作用,等溫過程中貝氏體鐵素體中的碳原子大量擴(kuò)散至薄膜狀殘余奧氏體中,因此薄膜狀殘余奧氏體的穩(wěn)定性更高,這對軸承尺寸精度的控制有一定益處。
圖10 20CrMnMoAl鋼等溫淬火組織TEM圖
Fig.10 TEM image of austempered microstructure of carbu-rized 20CrMnMoAl steel
6、結(jié)束語
隨著我國十四五”規(guī)劃的正式啟動,高鐵、航空發(fā)動機(jī)、盾構(gòu)機(jī)、風(fēng)電機(jī)組等高端裝備軸承是未來重點(diǎn)研發(fā)項(xiàng)目,針對滲碳軸承鋼,掌握“高質(zhì)高效、綠色環(huán)保”的先進(jìn)熱處理技術(shù)具有重要意義。
滲碳軸承鋼經(jīng)滲碳、淬火等熱處理工序后比全淬硬馬氏體軸承鋼具有更高的抗沖擊和耐疲勞性能,但有關(guān)滲碳軸承鋼的研究還有諸多的問題需要深入:
1)網(wǎng)狀碳化物的析出控制;
2)殘余奧氏體形態(tài)和含量的控制;
3)對滲碳軸承鋼基體組織的研究。
除了細(xì)化淬火馬氏體以外,貝氏體等溫淬火展現(xiàn)出了極大的發(fā)展?jié)撡|(zhì),馬氏體+下貝氏體的混合組織比任何單一的淬火組織都具有更優(yōu)的使用性能,而目前國內(nèi)對滲碳軸承鋼的貝氏體等溫淬火研究還不夠廣泛和深入,一些問題亟需探索和解決,如貝氏體等溫淬火溫度、時(shí)長,等溫淬火后的殘余奧氏體含量及其對尺寸穩(wěn)定性的影響,等溫淬火碳化物析出對力學(xué)性能的影響規(guī)律等。
(參考文獻(xiàn)略)
(來源:軸承雜志社)
引文格式:
于興福,王士杰,趙文增,等.滲碳軸承鋼的熱處理現(xiàn)狀[J].軸承,2021(11):1-9.
作者簡介
于興福,男,1976年生,沈陽工業(yè)大學(xué)副教授,博士生導(dǎo)師,主要從事航空軸承鋼的熱處理技術(shù)、鎳基單晶/柱狀晶高溫合金的制備技術(shù)、高溫合金的冶煉技術(shù)、精密鑄造用型殼制備技術(shù)的研究工作。多年來,參與國家重點(diǎn)研發(fā)計(jì)劃、“兩機(jī)”專項(xiàng)、“大飛機(jī)”材料專項(xiàng)和國防科工局專項(xiàng)等多個(gè)項(xiàng)目。主導(dǎo)研發(fā)了航空軸承用穩(wěn)定化熱處理、強(qiáng)韌化熱處理、馬氏體+貝氏體復(fù)合淬火、真空等溫淬火等熱處理工藝,研發(fā)的熱處理工藝被應(yīng)用于多個(gè)型號軸承的生產(chǎn)和科研制造,并取得了良好的效果。研究期間,申請軸承相關(guān)專利技術(shù)8項(xiàng),已授權(quán)專利2項(xiàng),在國內(nèi)外期刊發(fā)表研究論文80余篇。
軸研所公眾號 軸承雜志社公眾號
營銷熱線
0379-64367521
0379-64880626
13693806700
0379-64880057
0379-64881181